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1. Introduction 
 
One of main thrusts of modern plant operation is to 
improve the quality of online information in 
distributed control system (DCS). Accurate 
information about the current state of a process is 
paramount for plant monitoring and control. 
Unfortunately, process measurements are often 
corrupted by measurement noise. The presence of 
measurement noise not only prevents plant 
operators from identifying true values of process 
variables, but also deteriorates controller 
performance when the raw measurements are 
directly transmitted to controllers to calculate control 
moves. 
 
To cope with these problems, digital filters, such as 
exponentially weighted moving average (EWMA) or 
moving average (MA) filters, have been widely 
applied. The EWMA and MA filters use 
measurement temporal redundancy where past and 
current measurements are averaged to give 
estimates for the current values of the process 
variables. These classical filters provide satisfactory 
performance for steady-state or slow dynamic 
processes. However, under process transient 
conditions, they inevitably introduce larger time 
delay in order to effectively attenuate the noise. 
Consequently, advanced filters, such as model-
based filters, have been developed for dynamic 
processes. The model-based filters employ both 
measurement temporal and spatial redundancy, 
where information from both past measurements 
and other variables in different places of a plant via 
process models are used for the state estimation. A 
well known model-based filter is the Kalman filter 
developed in 1960. It employs stochastic linear-
state-space process and measurement models. 
The most attractive advantage of the Kalman filter 
lies in its optimal estimation in the sense of 
minimum mean squared prediction errors, and it 
has acquired a reputation as a panacea for process 
state estimation and prediction [1]. The optimality of 
the Kalman filter requires two restrictive 
prerequisites, linear-state-space models and 
independent white Gaussian noise for both process 

and measurements. Although applications of 
Kalman filters in tracking moving objects such as 
aircraft and missiles have been common, their 
applications in chemical engineering are relatively 
infrequent [2, 3]. As Brosilow and Joseph [3] 
pointed out, the difficulties in implementing Kalman 
filters in chemical industries are associated with 
identifying reliable dynamic models for the 
processes as well as specifying stochastic 
properties of process model and measurement 
noise. Kalman filters are usually tuned online during 
their implementations. However, their applications 
have met some problems, such as divergent and 
unreliable results and difficulty to tune [4]. 
 
Dynamic data reconciliation, as an alternative to the 
Kalman filter, was studied by Bai et al. [5]. The 
principle of data reconciliation lies in its integration 
of information from both measurements and 
process models to provide more reliable estimates 
of process variables. More importantly, the 
reconciled data are consistent with known 
relationships between process variables, such as 
mass and heat balances. The concept of data 
reconciliation was initially developed to calculate 
mass balances for steady-state processes [6]. The 
interest in applying data reconciliation in plants 
started in the 1980s when plant managers realized 
that data reconciliation can turn process raw data 
into consistent and reliable information, and such 
information is critical for effective plant operation 
and management. During the past decade, the 
benefits of applying data reconciliation to steady-
state processes have triggered some researchers 
to develop data reconciliation for dynamic 
processes, for example, [5, 7-14]. 
 
This paper introduces the methodologies of 
dynamic data reconciliation (DDR) developed by 
Bai et al. [5, 7, 15, 16]. The DDR, viewed as a filter, 
makes use of discrete dynamic models that can be 
phenomenological or empirical as constraints in 
reconciling raw measurements, so that the “best” 
estimates for the process variable are obtained at 
each sampling time, and more importantly, the 
reconciled values are used for process control. In 
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this paper, the impact of measurement noise on 
controller performance is investigated. Then, the 
use of DDR to improve controller performance is 
conducted. The performance of DDR in improving 
controller performance is compared to that of 
EWMA filter. Finally, a method to use 
autoassociative neural networks to perform DDR is 
studied.  All these studies are carried out via 
simulation of a binary distillation column with four PI 
control loops. 
 

2. Methodology 
 

2.1. Predictor-corrector form for DDR algorithm 
 
Consider a plant with M measured variables, and 
assume the measurements are contaminated only 
by white Gaussian noise, at time t, we can write 

t t ty x= + ε     (1) 
where ty  is a M×1 vector of the measured values 
for the M variables, tx  is a M×1 vector of the true 
values of the M variables, and tε  is a M×1 vector of 
random variables representing the white Gaussian 
noise, t ~ N( , )0 Vε . In order to obtain more 
accurate knowledge about the current state of the 
process, prior information is required in addition to 
the measured values. This prior information can 
originate from process models. In other words, tx  
can be estimated from model predictions (e.g., one-
step-ahead predictions), tŷ . The information from 
the model predictions can be combined with the 
information from the measurements to give better 
estimates of tx . Because no mathematical models 
are perfect, model predictions contain some degree 
of model prediction errors. We assume the model 
predictions can also be written in the additive noise 
form 

t t tŷ x= + δ     (2) 
where tδ  is a M×1 vector of random variables 
representing model prediction errors assumed to be 
Gaussian white noise, t ~ N( ,  )0 Rδ . Now that at 
time t, ty  and tŷ  are known, the most likely values 
of tx  can be obtained by simultaneously minimizing 
the weighted sum of squared measurement and 
model prediction errors such that 

( ) ( )

( ) ( )

T -1
t t t t t

T -1
t t t t

1ˆ ˆ ˆMin J( )
2

ˆ ˆ ˆ ˆ              

⎡= − − +⎣

⎤− − ⎦

x y x V y x

y x R y x
(3) 

Analytical solution to tx̂  is available by taking 
partial derivatives for the objective function with 
respect to tx̂  and setting it to zero yields 

−= + +-1 -1 -1 -1 1
t t tˆ ˆ( ) ( )x V R V y R y   (4) 

Rearranging Equation (4) gives 
= + −t t t tˆ ˆ ˆ( )x y K y y    (5) 

where -1 -1 -1 -1 -1 -1( ) ( )= + = +K V R V I VR , and I is the 
identity matrix. Equation (5) is the expression of the 
DDR formula, which indicates the estimates of the 
current process variables (the reconciled values) 
are comprised of two terms that are respectively the 
model predicted values tŷ  plus the measurement 
corrections −t tˆ( )K y y . K is the gain of the DDR and 
it ranges from 0 to I. When measurement noise is 
significantly larger than model prediction errors, the 
gain of the DDR, →K 0 . Consequently, tx̂  
approach model predictions, t tˆ ˆ→x y . On the other 
hand, when the model predictions have significant 
errors, then →K I , and tx̂  approach raw 
measurements, t tˆ →x y . 
 
The estimation error by the DDR algorithm is given 
by 

t t tˆξ = −x x     (6) 
Putting Equation (5) into (6) and using Equations 
(1) and (2) give 

t t t t( )ξ = δ + ε − δK    (7) 
Taking expectations of both sides of Equation (7) 
yields 

t t tE[ ] E[ ] ( )E[ ]ξ = ε + − δK I K   (8) 
Because tE[ ]ε = 0  and tE[ ]δ = 0 , thus tE[ ]ξ = 0 , 
meaning that the DDR is an unbiased estimator. 
From Equation (7), the variance of the estimation 
error can be given by 

T T
t t tV( ) V( ) ( ) V( )( )ξ = ε + − δ −K K I K I K (9) 

Putting tV( )ε = V , tV( )δ = R and -1 -1 -1 -1( )= +K V R V  
into (9) and rearranging yield 

( ) 11 1
tV( )ξ

−− −= +V R    (10) 
 
Equation (10) indicates that the variance of the 
estimation error is a function of V and R. Because 
both V and R are symmetrical and positive definite 
matrices, the elements of tV( )ξ  are smaller than 
those in V and R, indicating that the combination of 
the measured and model predicted values results in 
more accurate estimates than using only one of 
them individually. The predictor-corrector form for 
the DDR algorithm can be schematically illustrated 
in Figure 1. 
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Figure 1 Predictor-corrector form of DDR algorithm. 
 
It is important to mention that model prediction 
errors are rarely white Gaussian noise, and their 
statistical properties, such as its covariance matrix 
R, is difficult to evaluate. Indeed, models can be 
represented by complex functions and numerous 
linear and nonlinear model structures, can contain 
parameters with varying degree of uncertainty, and 
their predictions can be affected by erroneous input 
variables. Consequently, elements in R, in other 
words, elements in the DDR gain matrix K can be 
treated as tuning parameters. 
 
2.2. Comparison of DDR with Kalman filter 
 
It is interesting to note that the form of the DDR 
(Equation (5) is similar to that of a Kalman filter. 
The use of a Kalman filter demands a specific 
structure for process state/measurement models, 
namely, 

t t-1 t-1 t-1 + + =x Ax Bu w    (11) 

t t t= + εy Cx     (12) 
where A, B, and C are deterministic matrices with 
appropriate  dimensions. If all the state variables of 
the process are directly measured, C is an identity 
matrix. tw  denotes process noise assumed to be 
white Gaussian  noise and independent of tε , 

t ~ N( , )w 0 S . An important assumption in the 
Kalman filter is that all uncertainties in the models 
of the process can be efficiently assimilated to tw . 
For the problem defined by Equations (11) and (12), 
the optimal estimates of the process variables by 
the Kalman filter are given by 

( )t t t t tˆ ˆ ˆκ= + −x y y Cy    (13) 
where 

t t-1 t-1ˆ ˆ  + =y Ax Bu     (14) 
and the Kalman gain tκ  is recursively calculated by 

T
t t-1
− = +P AP A S     (15) 

( ) 1T T
t t tκ

−− −= +P C CP C V   (16) 

t t t tκ− −= −P P CP     (17) 
Because the matrices t

−P , tP  and tκ  need to be 
updated at each sampling time, the Kalman filter is 
a time-variant system. However, for the process 
defined by Equations (11,12), matrices t

−P , tP  and 

tκ  can reach constant values. At this point, the 
Kalman filter is known as steady-state Kalman filter. 
It is important to comment that the recursive 
calculations of the matrices t

−P , tP  and tκ   are 
independent of the measurement realizations. 
Therefore, they can be computed offline without 
actually making any measurements. However, for 
nonlinear process models, the Kalman filter is 
modified by linearizing the nonlinear terms in the 
model at each sampling time, and it is known as an 
extended Kalman filter. In this case, the matrix A 
used to calculate the Kalman gain becomes time-
dependent. Matrices t

−P , tP  and tκ  change 
correspondingly, and cannot be computed offline. 
 
It is apparent that the Kalman filter involves 
complex mathematical manipulations. In addition, 
because it is difficult to determine the covariance 
matrix of the process noise, S, elements in S are 
commonly viewed as tuning parameters rather than 
measurable constants in implementations of the 
Kalman filters. It also has been observed that, if 
matrix C in the Kalman filter is an identity matrix, 
the form of the DDR algorithm is identical to that of 
the Kalman filter but their gain matrices are 
calculated in different ways. However, if both R for 
the DDR filter and S for the Kalman filter are 
appropriately tuned, the two filters have been 
shown equivalent to each other [5]. However, 
compared to the Kalman filter, the concept of DDR 
filter is relatively concise and straightforward so that 
it is easier to understand and implement. In 
addition, the DDR filter can use a variety of 
structures for process models (e.g., linear and 
nonlinear). 
 
2.3. AANN-based DDR algorithm 
 
The DDR algorithm of Equation (5) requires 
calculating model predictions at each sampling 
time. Then, the model predictions are reconciled 
with the measured ones to produce reconciled 
values for process monitoring and control purposes. 
For the case where the model predictions cannot be 
explicitly calculated, the DDR problem formulated 
by Equation (3) can be modified as 

( ) ( )

( ) ( )

T -1
t t t t t

T 1
t t

1ˆ ˆ ˆMin J( )
2

ˆ ˆ                  Ω−

⎡= − − +⎣

⎤⎦

x y x V y x

f x f x
 (18) 

 
t t t tˆ ˆ ˆ( )= + −x y K y y

-1 -1( )= +K I VR

xt

Measurements, yt Model predictions, ŷt 

Reconciled data,   tx̂

xt

xt
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where tˆf( )x  is a functional vector of process 
models, and Ω is the covariance matrix of model 
residuals, whose elements are treated as tuning 
parameters. Using Equation (18), at each sampling 
time, the reconciled values can be obtained by 
iteratively solving the optimization problem using 
nonlinear programming (NLP) techniques. 
However, for complex processes longer 
computation time may be required for the 
optimization.  To remedy this problem, a method to 
train an autoassociative neural network (AANN) to 
perform dynamic data reconciliation was proposed 
by Bai et al. [15]. Once trained offline, the neural 
network can directly perform data reconciliation 
online without any iteration, and the neural DDR 
becomes more suitable for real-time applications.  
 
The AANN architecture for a dynamic process is 
presented in Figure 2. It has similar architecture as 
a conventional feedforward neural network, 
composed of an input layer, three hidden layers and 
an output layer. The first and third hidden layers 
contain a relatively larger number of neurons, while 
the second hidden layer contains a lower number of 
neurons. The feature of an AANN is to perform data 
compression by the third layer (bottleneck layer). 
The first, second and third layers compress the 
input information to a lower dimension, then the 
fourth and fifth layers regenerate the main 
underlining features of the original information. The 
compression/regeneration process enables the 
network to represent the input information in a 
compressed form that can often reveal the essence 
of the data. 
 

 
 
Figure 2 Architecture of an AANN for a dynamic system. 
 
During neural network training, process models are 
encapsulated within the structure of the network 
simultaneously to perform data reconciliation. The 
number of neurons in the input and output layers 
are determined by the structures of process models 
employed, while the number of neurons in each 

hidden layer is determined by trial-and-error. To 
capture the dynamics of the process, the output of 
the network tx̂ , delayed a number of times, is fed 
back to the input layer so that the AANN can 
incorporate both temporal and spatial patterns. In 
Figure 2, D represents the required number of time 
delays for the process output variables, and ut-d, …, 
ut-d-I represent the inputs with a time delay of d, 
d+1, …, d+I.  
 
The objective function used to train a dynamic 
AANN to perform date reconciliation can be written 
as 

( ) ( )

( )
( )

N
T 1

t t t t
t 0

T 1
t t 1 t d t d 1

t t 1 t d t d 1

1 ˆ ˆMin J( )
N

ˆ ˆ               , ,..., , ,...

ˆ ˆ               , ,..., , ,...

θ

Ω

−

=

−
− − − −

− − − −

⎡= − − +⎣

⎤⎦

∑ y x V y x

f x x u u

f x x u u

(19) 

where θ is a vector of connection weights 
(parameters) in the AANN, N is the total number of 
data points used to train the network. The elements 
in Ω, in this case, are treating as tuning parameters 
in training the network. Among training algorithms, 
backpropagation is the simplest method. However, 
more advanced training algorithms such as the 
quasi-Newton or the Levenberg-Marquardt methods 
are most often used for better accuracy and faster 
convergence. In the first iteration in training the 
dynamic AANN, the output vector fed back to the 
input layer is not known, but can be assigned the 
raw measurements. Then, the network is trained 
until satisfactory convergence criterion is met. After 
the first iteration, the vectors of the network outputs 
are fed back as the inputs, and then the network is 
trained again. After several recurrent iterations, the 
feedback vectors and the objective function will not 
change, indicating the training of the dynamic 
network has been completed. 
 
It is important to note that the AANN-based DDR 
can actually embrace any model structures. For 
cases where process models can be used to 
explicitly calculate the model predictions, either the 
predictor-corrector DDR or the AANN-based DDR 
algorithm can be developed. However, the use of 
AANN-based DDR provides the advantages that it 
does not need online tuning because it has been 
tuned offline during its own training. Furthermore, 
the use of AANN-based DDR is straightforward. It is 
not required to calculate the model predicted values 
at each time, since information about process 
dynamics has been encoded into the network 
during training. The scheme of using AANN to 
perform dynamic data reconciliation is illustrated by 
Figure 3. 
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Figure 3 Scheme of AANN-based DDR algorithm. 
 

3. Results Discussion 
 
The methodologies of DDR developed were tested 
in control of a binary (benzene/toluene) distillation 
column. The distillation column, presented in Figure 
4, has four PI control loops. Controllers TIC-D and 
TIC-B are used to control the top and bottom 
temperatures by manipulating the reflux flow rate 
and the flow of steam to the reboiler, respectively. 
Controllers LIC-D and LIC-B are used to control the 
reflux drum and column base liquid levels by 
manipulating the distillate flow rate and the bottom 
product flow rate, respectively. A sampling period of 
30 s was used. The dynamic distillation simulator 
was based on rigorous distillation models, (i.e., 
mass and heat balances, vapor-liquid equilibrium, 
and tray hydraulics). The nominal steady-state 
values for all measurements and their noise levels 
are listed in Table 1. 

 
Figure 4 Schematic diagram of the distillation column. 

 
Table 1 Nominal steady-state values and noise 
levels of measured variables for the distillation 
column. 

Variable Units Steady 
State 

Standard 
Deviation

Feed flow kmol/h 100.0 0.50 
Top temperature oC 84.2 0.25 
Bottom temperature oC 117.4 0.25 
Reflux drum level m 0.50 0.02 
Column base level m 0.70 0.02 

 
3.1 Effect of measurement noise on performance of 
controllers 
 
For each pair of controlled and manipulated 
variables, open-loop responses of the controlled 
variables to a step change in the manipulated 
variables were first simulated to obtain the process 
reaction curve. The open-loop responses were 
approximated by either first-order-plus-dead-time 
(FOPDT), or pure-integrator-plus-dead-time 
(PIPDT) models. Then, Ziegler-Nichols empirical 
tuning rules were used to determine initial estimates 
of the controller parameters, KC and Iτ  (see first 
row of Table 2). Without measurement noise, the 
performance of the controllers was tested for 
disturbance regulation when the column was 
subjected to a series of step changes in feed flow 
rate having magnitudes of 20%, -40% and 20% of 
steady-sate values, respectively. Results of this 
simulation are presented in Figure 5. These results 
illustrate that the controllers have good 
performance in the absence of measurement noise. 
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Figure 5 Closed-loop responses with Z-N tunings without 
measurement noise for series of step changes in feed flow rate. 
HD: reflux drum level, D: distillate flow, TD: top temperature, R: 
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reflux flow, HB: base level, B: bottom flow, TB: bottom 
temperature, Q: reboiler heat duty. 
 

 

Table 2 Controller tuning parameters for the distillation column. 
LIC-D TIC-D LIC-B TIC-B 

Noise 
 

Controller 
 

KC 
kmol.h-1.m-1 

τI 
min 

KC 
kmol.h-1.oC-1 

τI 
min 

KC 
kmol.h-1.m-1 

τI 
min 

KC 
MJ.h-1.oC-1 

τI 
min 

No Initial Z-N -960.0 46.5 -87.0 48.3 -960.0 46.5 850.7 71.6
Yes Detuned -43.2 15.0 -2.2 5.0 -76.4 5.0 45.2 5.0 
Yes With DDR -92.2 15.0 -4.9 5.0 -173.8 5.0 150.6 5.0 

 
Next, using the standard deviations given in Table 
1, white Gaussian noise was added to the true 
values of the controlled variables to provide more 
realistic measured values. Subsequently, these 
noisy measurements were used by the controllers 
to generate closed-loop responses. Results for the 
same series of feed flow disturbances are 
presented in Figure 6. The presence of the 
measurement noise significantly reduced the 

performance of all control loops. The dynamic 
responses of the controlled variables, except for 
bottom temperature, displayed high-frequency 
variations around their setpoints, while the 
manipulated variables were characterized by high 
magnitude variations, often saturated oscillations 
that completely masked the expected responses. 
 
 

0 60 120 180 240 300 360 420 480 540
Time, min

116
117
118
119

T B
 , 

o C

0.6
0.7
0.8

H
B 

, m

83
84
85
86

T D
 , 

o C

0.4
0.5
0.6

H
D
 , 

m

2000
3000
4000

Q
, M

J/
h

0
40
80
120

B
, k

m
ol

/h

0
40
80
120

R
, k

m
ol

/h

0
20
40

D
, k

m
ol

/h

TIC-B

LIC-B

TIC-D

LIC-D

 
Figure 6 Closed-loop responses with Z-N tunings with measurement noise for series of step changes in feed flow rate. Ο: raw, —: true, 
— - —: setpoint. 
 
To regain an acceptable process performance, the 
four controllers were retuned considering the impact 
of the measurement noise. For this multiple-input 
multiple-output (MIMO) discrete PI control system, 
the tuning objective function is to minimize 

( )

( )

s

s

2t4 *
C I i i,t i,t

i 1 t 0

t 2
i i,t i,t 1
t 0

( , ) x x t

                u u t

= =

−
=

⎡
Φ τ = α − ∆ +∑ ∑⎢

⎣
⎤β − ∆∑ ⎥⎦

K
 (20) 

where Ф denotes overall cost function of the control 
system, i,tx  represents the true value of controlled 

variable i, *
i,tx  represents the setpoint for controlled 
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variable i, and i,tu  represents the manipulated 
variable for control loop i. ∆t is the sampling time 
interval. α is a weighting factor for the integral of 
squared errors of the controlled variable (ISE), and 
β is a weighting factor for the integral of squared 
differences of the manipulated variable between 
sampling times t and t-1 (ISDU). ts represents the 
total number of process sampling periods over 
which the integration is performed. The 
minimization of the ISE term in the objective 
function attempts to maintain the controlled variable 
as close as possible to its setpoint, whereas the 
minimization of the ISDU term attempts to prevent 
excessive adjustments of the manipulated 
variables. The selection of the weighting factors for 
ISE and ISDU terms is a trade-off between dynamic 
responses of the controlled and manipulated 

variables. The optimization was performed using 
quasi-Newton method with lower and upper 
bounds. Values of optimal controller parameters are 
presented in the second row of Table 2. The 
integral times, obtained when the measurement 
noise was considered, hit their lower bounds. The 
controller gains were reduced significantly, on 
average, 23 times smaller. Meanwhile, the integral 
times were, on average, ten times smaller. Closed-
loop responses with the detuned controllers are 
presented in Figure 7. The high magnitude 
oscillations of the manipulated variables were 
significantly reduced compared to those in Figure 6. 
The dynamics of the controlled variables could be 
observed despite the noisy measurements. 
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Figure 7 Closed-loop responses with detuned controllers with measurement noise for series of step changes in feed flow rate. Ο: raw, 
—: true, — - —: setpoint. 
 
Using Equation (20), the overall cost function of the 
control system was evaluated for the initial Z-N 
tuning controllers without and with measurement 
noise, and for the detuned controllers. These 
results are presented in Table 3. Without 
measurement noise the initial Z-N tunings yielded 
very smaller cost function. With measurement noise 
the initial Z-N tunings resulted in very large cost 
function. However, when the controllers were 
detuned, the controller performance became better, 

but still about eight times larger than without 
measurement noise. 
 
Table 3 Overall cost function of the control system 
for the distillation column 

Controller Noise DDR Cost function, Φ

Initial Z-N tuning No No 0.563 
Initial Z-N tuning Yes No 2692 
Detuning Yes No 4.663 
With DDR Yes Yes 0.925 
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3.2. Improving controller performance by DDR 
 
Because the presence of measurement noise in the 
controlled variables deteriorated the controller 
performance, a DDR algorithm for the distillation 
column was developed and embedded inside each 
control loop to reduce the noise propagation as 
depicted in Figure 8. 

 
Figure 8 Scheme of DDR algorithm embedded inside feedback 
loops. 
 
The complexity of the distillation process makes it 
impractical to develop phenomenological models to 
be used in the DDR. Consequently, the identified 
linear models around the process nominal steady 
state were used. 

' ' -4 ' -4 '
D,t D,t-1 t-1 t-1

-5 ' -5 '
t-1 t-2

H H =  9.058×10 D  9.058×10 R

+2.112×10 Q + 1.06×10 Q                       (21)

− − −
 

 
' ' -3 ' -3 '
D,t D,t-1 t-1 t-2

-4 ' -4 ' -4 '
t-5 t-1 t-2

T 0.9414T = 5.64×10 R 4.332×10 R

+2.5×10 Q 1.184×10 F 2.368×10 F  (22)

− − −

− −
 

 
' ' -3 ' -3 '
B,t B,t-1 t-2 t-1

-5 ' -5 ' -4 '
t-1 t-2 t-1

-4 '
t-2

H -H = 1.023×10 R -1.152×10 B

-2.056×10 Q -1.028×10 Q +7.942×10 F
+3.971×10 F                                                (23)

 

 
' ' ' '
B,t B,t-1 t-8 t-9

-5 ' -4 ' -3 '
t-1 t-2 t-3

T -0.9228T =-0.011R -0.00385R +

4.867×10 Q +6.084×10 Q -7.583×10 F (24)
 

 
where the prime indicates variables in their 
deviation forms. The DDR algorithm for the 
distillation column can be written in the compact 
form 

r m
D,t D,tD,t D,t

r m
D,t D,tD,t D,t

r m
B,t B,tB,t B,t
r m
B,t B,tB,t B,t

ˆ ˆH HH H
ˆ ˆT TT T

 =    
ˆ ˆH HH H

T Tˆ ˆT T

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥+ −⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

K   (25) 

where the superscript “r” represents the reconciled 
values, “m” the measured values, and “∧ ” the 
model predicted values. K is the gain matrix of the 
DDR and is assumed to be diagonal. The elements 
in K were treated as tuning parameters and they 
were selected such that the reconciled values were 

as close as possible to their true values. The mean 
squared differences (MSD) between the reconciled 
and the true values as a function of the DDR gain 
for each controlled variable were evaluated, and the 
results are presented in Figure 9. The minimum 
MSD values were obtained with the following DDR 
gain matrix 

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D D B B         H      T        H       T
0.21 0 0 0

0 0.24 0 0
0 0 0.21 0
0 0 0 0.23

K
  (26) 

The DDR gain matrix moving away from the optimal 
gain matrix resulted in lager values of MSDs. 
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Figure 9 Values of MSD/σ2 for reconciled data as a function of 
DDR gain. σ2 is the variance of the raw measurements for each 
variable used to scale the MSD. 
 
Using Equation (26) for the DDR gain matrix, the 
controllers were re-tuned by minimizing the same 
objective function of Equation (20) when the 
distillation column was submitted to the same 
sequence of feed flow rate disturbances. Optimal 
values of the controller parameters are presented in 
the third row of Table 2. The controller gains 
increased by factors of 2~3, compared to the 
detuned controllers, while the integral times 
remained unchanged, meaning that the controllers 
became more aggressive. The values of the overall 
cost function of the control system with the 
embedded DDR is presented in Table 3. The 
overall cost function decreased significantly from 
Ф=4.663 to Ф=0.925, indicating the controller 
performance was significantly enhanced by the 
DDR. The raw, reconciled and true values for the 

Controller Actuator Process

Sensor 

Setpoint 

Disturbances 

Raw measurements 

DDR 

Output
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controlled variables and the control actions are 
presented in Figure 10. The deviations of the 
controlled variables from their setpoints decreased 

considerably, while the excessive variations of the 
manipulated variables were reduced even with 
these more aggressive controllers. 
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Figure 10 Closed-loop responses of the distillation column with DDR inside feedback loops for series of step changes in feed flow rate. 
Ο: raw, ▬: reconciled, —: true, — - —: setpoint. 
 
3.3. Comparison of DDR to EWMA filter 
 
The performance of the DDR in improving the 
controller performance was compared to that of 
classical EWMA filter. The EWMA filter for the 
process can be given by 

−

−

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

f f m
D,t D,t 1 D,t
f f m

D,t D,t 1 D,t
f f m
B,t B,t 1 B,t
f f m

B,t B,t 1 B,t

H H H
T T T

 = ( )
H H H
T T T

IΨ Ψ   (27) 

where the superscript “f” denoting the filtered 
values, Ψ  is a diagonal matrix whose elements are 
tuning parameters for the filter. The optimal tuning 
parameters for the EWMA filter having the smallest 
MSD values for each controlled variable were 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.86 0 0 0
0 0.77 0 0
0 0 0.73 0
0 0 0 0.79

ψ   (28) 

Using this EWMA filter, the minimum overall cost 
function of the control system was Ф=1.36. 
Compared to Ф=0.925 yielded by the DDR, the 
performance of the DDR is better than that of the 
EWMA. The better performance of the DDR was 

attributed to the fact that the DDR is able to 
anticipate process dynamics because process 
dynamic models are an integral part of the DDR. 
The controller performance was considerably 
improved by the DDR, even though simple linear 
models were used. The performance of the DDR 
depends on the accuracy of process models 
employed. More comprehensive models are 
expected to give better performance of the DDR. If 
“perfect” models were assumed and used, the 
measurement noise could be completely eliminated. 
In other words, the performance of the control 
system was studied with “perfect” DDR. The optimal 
overall cost function of the control system with the 
“perfect” DDR was Ф=0.22. The overall cost 
function of the control system without filter, with the 
EWMA filter, with the linear DDR and with the 
assumed ”perfect” DDR are presented in Figure 11. 
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Figure 11 Comparison of overall cost function of the control 
system without and with different filters. 
 
3.4. AANN-based DDR 
 
As mentioned, the use of predictor-corrector form 
for the DDR needs to calculate model predictions at 
each sampling time and online tuning. Next, the use 
of AANN to perform online data reconciliation for 
the distillation column was investigated. Previous 
studies [17] showed that dynamic behavior of the 
two liquid levels is linear, whereas it is highly 
nonlinear for the two temperatures. The nonlinearity 
of the two temperatures lies in the fact that the top 
temperature could never decrease below the boiling 
point of pure benzene, and the bottom temperature 
could never exceed the boiling point of pure toluene 
under the column pressures. The DDR employing 
linear models was only effective for a narrow range 
of operating points around the steady state. When 
the controllers of the two temperatures had larger 
setpoint changes, the effectiveness of the DDR was 
reduced. Consequently, nonlinear models need to 
be developed for the two variables. 
 
To more adequately capture the nonlinear 
dynamics of the two temperatures, under open loop 
conditions the distillation column was excited by a 
series of random step changes in the manipulated 
variables. Using the data sets, a feedforward neural 
network having three layers with eight neurons 
(including the bias neuron) in the input layer, eight 
neurons in the hidden layer and one neuron in the 
output layer, was developed for the top 
temperature. Concisely this neural network having 
the structure {8, 8, 1} can be expressed as 

D,t D,t 1 t 1 t 2 t 3 t 1 t 2 t 3
ˆ ˆT NN(T ,R ,R ,R ,Q ,Q ,Q )     (29)− − − − − − −=  

where NN represents the nonlinear 
transformations. Another feedforward neural 
network having the structure {6, 8, 1} was 
developed for the bottom temperature as 

− − − − −=B,t B,t 1 t 6 t 7 t 1 t 2
ˆ ˆT NN(T ,R ,R ,Q ,Q )   (30) 

Then, the process models of Equations (21), (23), 
(29) and (30) were respectively encapsulated in the 

training objective function (see Equation (19)) to 
train AANNs for each controlled variable. For each 
AANN, the number of neurons in the input layer 
was determined by the structure of the dynamic 
models, while the number of neurons in each 
hidden layer was selected by trail-and-error. The 
structures of the AANNs are presented in Table 4.  
 
Table 4 Number of neurons in each layer in the 
AANNs. 

Layer I II III IV V 
AANN for HD 7 13 2 13 1 
AANN for TD 9 12 3 12 1 
AANN for HB 7 14 3 14 1 
AANN for TB 7 14 3 14 1 

 
The AANNs for the reflux drum level, the top 
temperature, the column base level and the bottom 
temperature can be respectively expressed as 

− − − −=r m
D,t D,t t 1 t 1 t 1 t 2H AANN(H ,D ,R ,Q ,Q )   (31) 
r m
D,t D,t t 1 t 2 t 3 t 1 t 2 t 3T AANN(T ,R ,R ,R ,Q ,Q ,Q )− − − − − −=  (32) 
r m
B,t B,t t 1 t 2 t 1 t 2H AANN(H ,B ,R ,Q ,Q )− − − −=   (33) 

− − − −=r m
B,t B,t t 6 t 7 t 1 t 2T AANN(T ,R ,R ,Q ,Q )   (34) 

 
Notice that, the raw measurements were fed 
directly into the network, while the outputs of the 
network were the reconciled values. During offline 
training the AANN, the variance of the model 
residual for each controlled variable was the tuning 
parameter in the training objective function. When it 
was set to a large value, meaning that the raw 
measurements were not constrained severely, and 
consequently the reconciled values (i.e., the output 
of the network) were close to raw measurements. 
On the other hand, when it was set to a small value, 
meaning that a higher level of confidence was put 
on the models and as a result the model mismatch 
distorted the reconciled values. By trail-and-error, 
the variances of the model residuals were selected 
such that the performance of the AANNs was 
acceptable. The raw, reconciled and true values of 
the four variables in network training and validation 
are presented in Figure 12. It shows the reconciled 
values were close to the true values and had a 
lower variance than the raw measurements. 
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Figure 12 Raw, reconciled and true values for the controlled 
variables in AANN training and validation. o: raw, ▬: reconciled, 
—: true. 

After the offline training, the AANNs were implanted 
into the feedback loops. The performance of the 
AANN-based DDR, along with the controllers, when 
the top and bottom temperature controllers had a 
series of setpoint changes is presented Figure 13. It 
shows that AANN-based DDR performed very well 
in online tracking the true values of the controlled 
variables.  
 
With the AANN-based DDR, the optimal overall cost 
function of the controllers for the process was 
Φ=1.89. Using the process models (Equations (21), 
(23), (29), (30)), a DDR with predictor-corrector 
form was tested. For the same setpoint changes, it 
resulted in an optimal overall cost function at 
Φ=1.58 with optimal DDR gain matrix via properly 
online tuning. The better performance of the DDR 
with predictor-corrector form over the AANN-based 
DDR is attributed to the fact that process models 
directly participated in the data reconciliation, 
whereas, process models indirectly participated in 
data reconciliation in the AANN-based DDR. 
Information about the process dynamics contained 
in the models was lost partly during offline training 
the AANN.  
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Figure 13 Performance of AANN-based DDR along with controllers when the top and bottom temperature controllers had a series of 
step setpoint changes. o: raw, ▬: reconciled, ⎯: true, ⎯ - ⎯: setpoint. 
 
The effect of online tuning of the DDR gain for the 
predictor-corrector form on the performance of the 
control system was investigated. The optimal DDR 

gain matrix for this dynamic process when the two 
temperature controllers had step setpoint changes 
was 
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⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D D B B          H      T        H       T
0.19 0 0 0

0 0.26 0 0
0 0 0.20 0
0 0 0 0.24

K
 (35) 

 
Then the matrix K was multiplied by a factor of c. 
The DDR with gain matrix cK was implemented in 
the process. The performance of the control system 
was evaluated as a function of the values of c, and 
the results are plotted in Figure 14. For comparison, 
the overall cost function achieved by the AANN-
based DDR is also presented in Figure 14. The 
DDR with predictor-corrector form performed better 
than the AANN-based DDR over the range of -
0.44<log(c)<0.33, which is equivalent to 
0.36<c<2.14. When the gain matrix was set away 
from this region, the AANN-based DDR performed 
better. These results demonstrate that the AANN-
based DDR is more robust in its implementation. 
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Figure 14 Overall cost function of control system as a function of 
the DDR gain. 
 

4 Conclusions 
 
The magnitude of measurement noise must be 
considered when designing controllers using 
models of the process. Otherwise, the controllers 
are too aggressive, resulting in excessive variations 
in the controlled and manipulated variables. On the 
other hand, the detuning of controllers due to the 
presence of noise leads to more sluggish 
responses and lower controller performance. The 
DDR methods developed in this work was shown to 
be an effective tool that can be implemented in real-
time to reduce the impact of measurement noise 
before calculating the control action. The 
application of the DDR filter can result in 
significantly better feedback controller performance. 
It allows more aggressive controllers to be used, 

and at the same time, prevents the manipulated 
variables from excessive manipulations. The 
performance of DDR is better than classical EWMA 
filter because they can anticipate the process 
dynamics using process models. DDR can use a 
variety of process models (phenomenological, or 
empirical, linear, or nonlinear). Accurate process 
models play an important role for good performance 
of the DDR. A DDR using simple linear models can 
successfully attenuate the measurement noise. 
Further improvement of the DDR performance can 
be achieved using more comprehensive models 
that can more efficiently capture the underlying 
dynamics of the process. DDR can be in a 
predictor-corrector form, or an AANN-based form. 
Both forms have their advantages and 
disadvantages, and can compensate for each other. 
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