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Abstract 

An indirect method of multivariate calibration (MC) has been applied to samples of 

oenocarpus and jessenia palms from brazilian and peruvian amazon regions for prediction of 

metal contents of their flour peel+mesocarp ashes. Metal contents were determined by energy-

dispersive x-ray fluorescence (EDXRF). Then, Fourier transform infrared (FTIR) spectra of the 

same ashes were obtained. MC was performed on the samples in order to develop calibration 

models for predicting metal contents using mid-infrared spectra as independent variables and 

EDXRF metal contents as dependent variables. Calibration models providing approximate metal 

contents in ashes were obtained. K and Cu gave the best models, followed by Fe, Mn, P, Ca and 

Zn in decreasing order of quality.  
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Introduction 

 Principal component 

regression (PCR) and partial least-

squares (PLS) regression methods based 

on principal component analysis (PCA), 

are widely used for multivariate data 

analysis in spectroscopic calibration 

model building1. Multivariate calibration 

(MC) is the process of constructing a 

mathematical model to relate the output 

(multiple responses) of an instrument to a 

property or properties of samples2,3 . This 

process involves two steps. First it relates 

the matrix of independent variables (X) 

and the vector or matrix of dependent 

variables (Y) by an equation Y =f(X) or Y 

=Xβ, where β is a regression vector. The 

second step is to predict properties (Yprev) 

of new samples, i.e. samples not included 

in the calibration procedure, given an 

instrument output (Xprev) and the equation

 Yprev =Xprevβ. 

The number of principal 

components (PCs) for a regression 

model, is generally much less than the 

number of originally measured variables. 

The PCs are incorporated into each 

regression model in decreasing order of 

the percentage of total variance they 

explain until some pre-set criterion has 

been satisfied. 

MC is applicable to the 

determination of major constituents as 

well as microcomponents and other 

qualities or properties, and for a very wide 

range of instrument types. Using near 

infrared spectroscopy (NIRS) the 

prediction of protein content in intact, 

whole wheat kernels4, the determination 

of the octane number of gasoline, the  

characterization of filaments of acrylic 

fibres5 and the chemical composition and 

the energy value of compound feeds for 

cattle6 were successfully modelled. Also 

Fourier transform infrared (FTIR) 

transmission spectrometry has been 

applied to the direct determination of 

glucose in whole blood without any 

sample preparation7  

The goal of this paper is to 

investigate the capability of mid-infrared 

transmission spectrometry for the indirect 

determination of metal content in the flour 

peel+mesocarp ashes of oenocarpus and 

jessenia palms samples. The metal 

content was determined by using energy-
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dispersive x-ray fluorescence (EDXRF). 

Then, the FTIR spectra were obtained. 

Those spectra were used to develop 

calibration models for the two genera 

above, having as dependent variables the 

metal contents. If these models predict 

with reasonable accuracy it will be 

possible to cross information between 

equipments for constructing calibration 

models for other systems. 

 

Metodology 

Apparatus 

 

Determinations of the metal 

contents were performed by energy-

dispersive x-ray fluorescence using  

Espectrae-mod. 510 spectrophotometer. 

The operational instrumental conditions 

for EDXRF were the followings: Tube 

voltage:15 KV, Tube current :0.02mA, 

Filter name: Cellulose, Lifetime:100 s, 

Max. Energy:20 KeV, Atmosphere: 

Vacuum, Number of channels :1024. 

Infrared spectra were scanned on a 

BOMEM MB-Series B-100 FTIR 

spectrometer. The infrared measurements 

were carry out in the 4000-400 cm-1 

region.  Gain was selected automatically. 

An apodization cosine was applied, and 

the interferometer mirror speed was set at 

1,9272 cm s-1. The number of scans was 

20, resolution 4 cm-1. 

Palm samples and chemicals 

 

Twenty three samples of fruits from 

plants belonging to the oenocarpus and 

jessenia genus as specified in Table 1 were 

used. Fourteen samples (1-14) were of the 

oenocarpus genus and nine samples (15-23) 

from jessenia. KBr for infrared spectroscopy 

(Merk) was used. 

 

Analytical procedures 

 

From ripe fruits, peel+mescocarp 

were separated and dried at 103°C8 until 

they attained constant weight. Later these 

samples were ground and powdered. 

Before being analyzed they were 

previously mineralized9 by treating the 

assay portions of 5 g of powdered 

sample. Homogenized ash samples were 

subjected to EDXRF analysis and metal 

contents expressed as weight 
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percentages, were determined by this 

analytical technique. 

Ash samples after homogenization 

with KBr in a 100 mg KBr/1 mg ash ratio 

with a precision of 0,1 mg were converted 

into a thin disk after applying a pressure 

of 5,85 MPa for 1 min. Infrared spectra 

were scanned on a FTIR spectrometer. 

Each spectrum was an average of 16 

scans over the 4000-400 cm-1 wavelength 

range.  

 

Table 1: Analysed oenocarpus and jessenia palms samples from 

Brazilian and Peruvian Amazony . 

Sample code                   Origin                               Genus 

1(O.min) a                Abaetetuba  (Br)                        

Oenocarpus  

2(O.min)                  Abaetetuba (Br)                                   “       

3(O.map) d               Abaetetuba  (Br)                                  "       

4(O.min)                 Abaetetuba  (Br)                                  "        

5(O.bac) b                Abaetetuba  (Br)                                  "       

6(O.min)                 Abaetetuba   (Br)                                 "        

7(O.min)                 Igarapé Mirim (Br)                              "          

8(O.min)                 Igarapé Mirim (Br)                              "          

9(O.min)                 Igarapé  Mirim (Br)                             "          

10(O.min)               Igarapé Mirim (Br)                              "          

11(O.map)              Carr Quistococha Km 13 (Perú)          "        

12(O.min)              Carr Quistococha Km 13 (Perú)           "        

13(O.min)              Carr Iq-N Km 7 F. Pizarro (Perú)        "          

14(O.map)             Suni Mirano  R-Napo  (Perú)               "         

15(J.B) c                AlpH Carr Iq-N Km 20 (Perú)        Jessenia   

16(J.B)                  AlpH Carr Iq-N Km 20 (Perú)              "          

17(J.B)                  Carr Iq-N Km 7 F. Pizarro  (Perú)        "   
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18(J.B)                  AlpH Carr Iq-N Km 20 (Perú)              "          

19(J.B)                  AlpH Carr Iq-N Km 20 (Perú)              "          

20(J.B)                  AplH Carr Iq-N Km 20 (Perú)              "          

21(J.B)                  AlpH Carr Iq-N Km 20 (Perú)             "          

22(J.B)                  AlpH Carr Iq-N Km 20  (Perú)             "          

23(J.B)                  AlpH Carr Iq-N Km 20 (Perú)              "          

a Oenocarpus minor;   Br, Brazil. 

b Oenocarpus bacaba; 

c Jessenia bataua; 

d Oenocarpus mapora; 

 

Data analysis 

 

Seven metals have been 

determined for each oenocarpus and 

jessenia sample. These seven metals 

were considered as dependent variables: 

P, K, Ca, Mn, Fe, Cu and Zn (Table 2). 

Twenty three FTIR spectra (Fig. 1) were 

scanned and the numerical responses 

considered as independent variables.  

The data matrix has 23 sample rows and 

1868 spectroscopic response columns 

with absorbance values (23x1868 matrix). 

 

PCR10 and PLS11,12 as 

multivariate regression methods were 

used. The computational programs 

PIROUETTE 2.0213 and UNSCRAMBLE 

6.014, furnished by the Chemistry Institute 

of UNICAMP, Campinas, SP, Brazil were 

used. 

 

Table 2: Metal content as dependent variables of oenocarpus and jessenia samples by EDXRF. 

Sample  P K Ca Mn Fe Zn Cu 

1(O.min)   0,289 5,681 0,626 0,018 0,019 0,008 0,004 

2(O.min)  0,197 5,504 0,636 0,008 0,019 0,006 0,003 

3(O.map)   0,350 6,727 1,041 0,015 0,026 0,023 0,006 
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4(O.min)    0,201 6,364 0,275 0,005 0,013 0,005 0,004 

5(O.bac)   0,417 5,370 0,224 0,009 0,016 0,005 0,004 

6(O.min)    0,215 6,282 0,266 0,008 0,015 0,006 0,004 

7(O.min)    0,527 7,039 0,795 0,023 0,037 0,014 0,006 

8(O.min)    0,300 3,708 0,529 0,007 0,020 0,290 0,005 

9(O.min)    0,372 5,863 0,470 0,014 0,020 0,008 0,004 

10(O.min)    0,346 6,553 0,553 0,009 0,016 0,008 0,003 

11(O.map)   0,416 7,925 1,473 0,078 0,031 0,029 0,010 

12(O.min)    0,114 1,627 0,156 0,025 0,009 0,000 0,001 

13(O.min)    0,602 7,715 0,571 0,015 0,032 0,018 0,004 

14(O.map)   0,463 7,784 1,137 0,189 0,045 0,036 0,007 

15(J.B)     0,130 7,093 0,767 0,018 0,031 0,554 0,006 

16(J.B)     0,075 3,919 0,857 0,025 0,029 0,007 0,006 

17(J.B)*    0,283 5,524 1,291 0,042 0,033 0,016 0,003 

18(J.B)     0,158 3,564 2,601 0,090 0,033 0,007 0,006 

19(J.B)     0,134 2,899 0,577 0,008 0,014 0,001 0,003 

20(J.B)     0,167 2,861 1,136 0,024 0,026 0,005 0,006 

21(J.B)     0,222 3,150 2,031 0,120 0,060 0,006 0,004 

22(J.B)     0,101 7,642 0,820 0,053 0,045 0,046 0,008 

23(J.B)     0,174 4,372 2,135 0,069 0,040 0,050 0,004 
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Fig. 1: Infrared spectra plot for oenocarpus (blue) and jessenia (red) samples. 

 

Results and discussion 

Fig. 1 shows the mid-infrared 

spectra for 23 samples of peel+mesocarp 

flour ashes in absorbance vs 

wavenumber. Extensive preprocessing 

tools were performed on the data. The 

spectra were normalized after the second 

derivative was applied to remove 

systematic variations like the effects of 

KBr-ash tablet preparation. Multiplicative 

scatter correction (MSC) for reducing low-

frequency sources of variation that are not 

related to the chemistry under 

investigation, especially for light scattering 

problems in reflectance spectroscopy 

were also applied to the spectra 11. 

The data set was randomly divided 

into two parts, calibration samples 

(nineteen samples) and test samples (2, 

3, 9, and 18) to perform the role of 

unknown samples, PCR and PLS 

methods were applied for constructing 

separate models for each dependent 

variable. 

In the first step all the 1868 

independent variables and the seven 

dependent variables were used. Variables 

were mean centered, samples were 

normalised and the second derivative 

applied. It was necessary to estimate the 

optimal number of PCs for each PCR and 

PLS models in order to obtain accuracy 

and confiability in the predictions. One 

criterion used is the magnitude of the 

corresponding percentage variance 

accounted by each PC, compared with a 
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chosen stopping criteria in terms of 

percentage total variance. Another 

approach is estimating model size and 

involves validation, the process of 

evaluating the model’s predicitive ability. 

This is done when cross-validation is 

applied for PCR or PLS. Then, it is 

necessary to evaluate the Prediction 

Residual Error Sum of Squares (PRESS), 

Standard Error of Validation (SEV), 

Standard Error of Prediction (SEP). In 

cross-validation, one sample from the 

calibration set is temporarily left out and a 

model created from the remaining 

samples. From this model, a prediction of 

the left-out sample’s dependent variable is 

made and its residual recorded. The left-

out sample is then returned to the 

calibration set, another sample is 

excluded, a new model made, and a new 

prediction and residual generated. This 

process is repeated until every sample 

has been left out once. The PRESS 

calculated from the residual is related to 

SEV and SEP by the equations:

( )2ii c-c   PRESS ∑= )                  (1) 

 

where, ci is the true value for the 

dependent variable of the validation 

sample and ĉi the prediction obtained 

for each temporary validation sample 

from the built model. 

SEV = (PRESS /n)1/2                   (2) 

 where n is the number of 

samples in the validation set. 

SEP = ( PRESS/m)1/2…………….     (3) 

 where m is the number of 

samples in the test set.15,16 

SEP* = {PRESS /(n+m)})1/2        (4) 

 SEP* is used when n and m 

samples take part in calculating the 

error. 

In order to evaluate numerically 

the model quality of fit the multiple R-

squared value, R2 , called 

determination coefficient of the model 

can be used. The maximum R2 value is 

1. The closer the R2 value is to 1, the 
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better the model fit to the observed 

responses17,18. 

    ( )2∑ − cci
)  

R2   =   ------------- 

    ( )2∑ − cci  

 

  PRESS 

           =         ------------ 

   ( )2∑ − cci  

 

where c  is the mean of the 

responses.  

Seven PCR and PLS 

models were obtained. Table 3 

shows the experimental values 

for the dependent variables 

(EDXRF values) of the test set. 

Tables 4 and 5 show the 

predicted values of the test set 

samples using the PCR and PLS 

models, including the SEV, 

PRESS, SEP*, R2, number of 

PCs for each model, and the 

percentage variance values. 

Table 3: Metal content (%) by EDXRF for the test set 

Sample\ci P K Ca Mn Fe Zn Cu 

2 0.197 5.504 0.636 0.008 0.019 0.006 0.003 

3 0.350 6.727 1.041 0.015 0.026 0.023 0.006 

9 0.372 5.863 0.470 0.014 0.02 0.008 0.004 

18 0.283 5.524 1.291 0.042 0.033 0.016 0.003 

 

Table 4: Metal content (%) for the test set predicted by PCR models. 

Sample\ĉi P K Ca Mn Fe Cu 

2 0.192 5.190 0.727 0.014 0.016 0.005 

3 0.327 6.146 1.162 0.087 0.036 0.007 

9 0.288 6.886 0.662 0.032 0.021 0.006 
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18 0.251 5.712 1.276 0.073 0.034 0.007 

SEV 0.138 1.466 0.667 0.050 0.011 0.002 

SEP* 0.115 0.838 0.495 0.035 0.009 0.0015 

PRESS 0.302 16.135 5.624 0.027 0.002 0.00005 

R2 0.33 0.80 0.35 0.51 0.47 0.61 

PCs 2 8 3 4 3 6 

%Var 59.0 93.0 70.0 77.0 70.0 87 

 

Table 5: Metal content (%) for the test set predicted by PLS 

Sample\ĉi  P K Ca Mn Fe Cu 

2 0.226 5.166 0.665 0.010 0.013 0.005 

3 0.303 6.144 1.188 0.094 0.038 0.006 

9 0.321 6.735 0.689 0.033 0.022 0.006 

18 0.234 5.577 1.403 0.078 0.035 0.007 

SEV 0.140 1.610 0.700 0.051 0.012 0.002 

SEP* 0.107 0.820 0.391 0.033 0.008 0.00136 

PRESS 0.265 15.482 3.518 0.025 0.002 0.00004 

R2 0.41 0.80 0.59 0.59 0.58 0.70 

PCs 1 3 2 2 2 3 

%Var 30.0 62.0 46.0 31.0 46.0 54.0 

 

According to the results presented 

in Tables 4 and 5, the PLS models 

normally use less components than the 

PCR models. This effect is well known 

and happens because PCR uses the PCA 

scores obtained only from the 

independent variables X matrix. These 

values are used in regression with the 

values of the dependent variable Y matrix. 

On the other hand, PLS decomposes the 

X matrix while interchanging information 

with the Y matrix and conversely. These 
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scores values from X and Y matrices are 

used in the regression for obtaining the Y 

values with more accuracy. It can be 

observed that SEV values of PLS are 

slightly higher than the SEV values of 

PCR, but all SEP* values of PLS are 

slightly lower than the PCR SEP* values. 

Fig. 2 and 3 show the experimental 

vs predicted K metal content plots of 

calibration and test set samples using the 

PCR and PLS models.  In these figures 

the points belonging to calibration set are 

in the 1,627%-7,925% K range for the 

experimental values and 1,497%-

7,6745% of K for predicted values.  The 

predicted values range from      -      % for 

PCR and       -       % for PLS.  However 

the test set K contents occupy only a 

small portion of this range, 5.50-6.73% K. 
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Fig. 2: Experimental vs predicted metal contents of K plot for calibration (□) and test (X) set samples 

with the PCR model. 
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Fig. 3: : Experimental vs predicted metal contents of K plot for calibration (□) and test (X) set samples 

for the PLS model. 

 



After observing figures for the other 

metal contents that are analogous to 

those of  Figs. 2 and 3 the best calibration 

models were found to be K and Cu 

followed by Mn, Fe, Ca, and P in 

decreasing order of quality. The Zn model 

(Fig 4) was not included in tables 4 and 5 

because it was built without samples 8 

and 15 of the calibration set. These 

samples have the higher values of Zn 

content than the other samples, 

presenting high leverages and student 

residuals.  As such they were considered 

outliers. 
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Fig. 4: Experimental vs predicted metal content of Zn plot for calibration (□) and test (X) set samples 

with PLS model. 

 

In order to reduce the number of 

variables and possibly improve the 

models the spectra (Fig 1) and loadings 

and regression vector plots (Fig. 5) were 

examined. It was found that extensive 

ranges of the spectra do not have relevant 

absorptions and little useful information 

for calibration. Fig. 5 illustrates the 

important spectral regions for calibration 

and the ones with high absolute loadings 

and regression coefficients.   Spectral 

regions were excluded from calibration if 

they contain both small absolute loading 

and regression coefficients. 

Fig. 5 (a) shows the loading plot for 

two PCs for 400-4000 cm-1 spectral 

range. In  Fig 5(b) one can observe the 

coefficients of vector regression plot for 

the first two PCs vs wave number in this 

spectral range. These plots have 



 13

appearances similar to those found for the 

other metals. The chosen ranges for the 

reduced variable PCR and PLS 

regression models of all metals were : 

400-1227 cm-1, 1364-1767 cm-1  and 

3466-3888 cm-1.  860 of the initial 1868 

variables were retained and the 

calculations were carried out in the same 

way as for all the variables. 

 

 

a                                                                                                   b) 

Fig. 5: (a) Loading  plot and (b) Vector regression coefficient vs wave number for calibration set of K 

content PCR model. 

 

The PCR and PLS models for the 

reduced variable set are almost the same 

as those for all 1868 variables and for this 

reason their results have not been 

reproduced here.  The most striking 

differences are that the PCR and PLS 

models for Mn and Ca, respectively, have 

one less significant component with the 

reduced variable set than with the 1868 

variable set. However these differences 

are not really significant since it is very 

difficult to choose the correct number of 

components to include in calibration 

models.  Different selection criteria can 

lead to different numbers of components 

to be used.  As always one does not want 

to leave out important factors since useful 

information about calibration will be 

missing and the models will provide 

unreliable predictions.  Including too many 

factors also leads to inaccurate results 

since random error contributions will be 

built into the model.  The SEV, SEP and 

R2  values are hardly changed on 

reducing the spectral variables.  For 

example the SEV values of 0.140, 1.541, 
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0.711, 0.051, 0.012 and 0.002 for the P, 

K, Ca, Mn, Fe and Cu PLS models are 

very similar to the corresponding values in 

Table 5 for the complete variable set. 

Calibration models were also 

constructed for the 10 most relevant 

absorptions at 447, 573, 619, 1026, 1028, 

1119, 1418, 1464, 2341 e 3431 cm-1. Also 

different pre-processing tecniques like 

mean-centering and MSC were applied to 

the spectra.  Prediction results changed 

only very slightly.  

Conclusions 

 FTIR spectra in the 4000-400cm-1 

region can used to provide approximate 

values of metal contents in ashes of 

palms samples from oenocarpus-jessenia 

complex using PCR and PLS models.  K 

and Cu gave the best models, followed by 

Fe, Mn, P, Ca and Zn in decreasing order 

of quality.  Although the absorption bands 

in the FTIR spectra important for 

calibration do not correspond to metal 

atom vibrations  
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