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Introduction: Physical variables - the most com-
mon ones being: temperature, flow and level - are 
usually those ones which are attractive for chemi-
cal processes. To measure physical variables, 
there is a great variety of very accurate sensors 
and transducers, that are normally quite affordable 
for industries that work with short time responses 
of an order of second decimals or, in the worst 
case, of few seconds. 
 
When chemical (analytic) variables are concerned, 
there are cases when measurers also work with 
short response time and that are sold by relatively 
low prices as, for example, pH or oxide-reduction 
potential measurers. However, when the issue is to 
measure chemical or biochemical variables related 
to composition, such as the measurement of DO 
(dissolved oxygen concentration), O2, CO, CO2, 
NH3 or other variables related to biomass, in terms 
of measurers the situation is more difficult. There 
are many cases when the analysis are performed 
in laboratories, by means of sample collecting and 
the response time can be minutes or even hours 
long. Even if an on-line analyser is available, the 
cost of such instrument and its precision are quite 
unsatisfactory. 
 
On the other hand, to maintain the quality specifi-
cations, it is necessary to know the composition (of 
the products) to enable the implementation of an 
efficient control system. In this case, if an on-line 
analyser with an acceptable response time, of a 
reasonable accuracy and low price is available, 
then the implementation of an advanced control 
strategy is possible to be considered. Unfortu-
nately, such kind of analyser, with all these charac-
teristics and in practical situations, is not usually 
available in industry. A soft sensor, an inferential 
measurer or an indirect measurer must be consid-
ered as a possible option to estimate the vari-
able(s) of interest in such situations (Chu et al., 
1998). 
 
A soft sensor corresponds to an indirect or inferen-
tial method of measurement in real time, when a 
mathematical static model, or preferably a dynamic 

one, is applied together with one or more meas-
ured variables, normally of kind flow, pressure or 
temperature type (physical variables). For such 
variables the measurers available in the market are 
low cost and accurate and they have fast re-
sponse. The applied dynamic model must have 
physical variables as inputs and the product of in-
terest composition as output. 
 
According to Zamprogna et al. (2001), “although 
gas chromatographs (GC’s) are available to obtain 
on-line analysis of product samples, they are sel-
dom used in distillation column applications be-
cause they are expensive to buy and to maintain 
and (most importantly), they provide delayed 
measurements, due both to sample time and dead 
time. The delay introduced by a GC can be detri-
mental therefore, from a process control stand-
point. Other measurement techniques such as in-
frared-based measurements, analysis of refractive 
index, density, or dielectric constant are not yet re-
liable or accurate enough for use in distillation ap-
plications 
 
For product composition control of distillation col-
umns, it is rarely the case that measurements of 
product compositions are directly used as con-
trolled variables, because on-line accurate and/or 
real time measurement of composition is difficult. 
Most analyzers, like gas chromatographs, suffers 
from large measurement delays (when realized 
with the aid of the laboratory), or are difficult to 
maintenance (when realized on-line) and high in-
vestment and maintenance costs. (Kano et al., 
2000). 
 
An inferential control is highly advisable to perform 
an on-line composition control. The product com-
position estimates employed to control are got 
starting from other variables measured in the proc-
ess. Therefore it is essential to obtain a very accu-
rate inferential model. 
 
The phenomenological model, if available, is the 
ideal one if it is accurate enough for a reasonable 
computational load. Control has to occur in real 



time. In practice, however, due to the high amount 
of the involved differential equations in large col-
umns, there is tendency of an execution delay, 
which may make the control not feasible. 
 
A faster solution, which generates not an intern 
model with state variables but an external one only 
with input and output variables, is to employ an 
empirical model determined from process data. 
 
To calculate an estimate of an unknown quantity 
from a set of known quantities, in principle, there 
should exist a mathematical model to describe 
quantitatively the relation between the unknown 
and known quantities. The estimator, which is de-
signed on the basis of the model, should provide a 
reliable estimate of the unknown quantity even 
when plant-mode mismatch and unmeasurable dis-
turbances are present, that is, estimation allows 
estimating unknown quantities, with zero steady 
state estimation error in the presence of unmeas-
urable disturbances and model-plant mismatch or 
when the process varies along time (Soroush, 
1998). 
 
This work proposes to employ soft sensors to ana-
lyse the composition of the products leaving the 
distillation column, by measuring the temperature 
in some trays, the recycle flow and the input and 
output flows. These inferred variables could be 
then fed into an inferential control system which 
aims at maintaining the quality of such products 
within the specifications or into a supervisory sys-
tem to follow up the value of these compositions 
along time. 
 
 
 
Soft Sensor: In their work on distillation columns, 
Mejdell and Skogestad (1991b) report one of the 
major difficulties they have to face to be product 
composition measurement. Among the existing al-
ternatives for chemical analysers, the most em-
ployed one is the gas chromatography, although it 
also presents some disadvantages like long delays 
in the measure obtention and high operational 
costs. Besides, they also point out the economical 
disadvantage, as this demands high investments in 
purchasing and installation (including back-up sys-
tems) as well as in operation and maintenance. 
 
In another article, Park and Han (2000) conclude 
that sensors that overcome cost limits, reliability 
and long response delays enable the implantation 
of more efficient systems for industrial plant control 
and monitoring. This allows a reduction of product 
and energy loss as well as of toxic products and 
safety problems. 
 

Soft sensors can be widely applied because their 
operation helps monitoring, controlling and optimis-
ing processes in general, supplying measurements 
that are more reliable, faster and at lower cost not 
only for development, but also for maintenance. It 
must me highlighted that these soft sensors can 
work as substitutes to several physical sensors or 
they can work together with them as monitoring 
aid, malfunction control and preventive mainte-
nance. 
 
According to the employed models, there are three 
distinct classes of techniques for soft sensor de-
velopment. The first class is composed of sensors 
that are based on white box modelling, obtained 
from equations that describe the process physics; 
the second class is composed of sensors based on 
black box modelling (or identification); the third 
class is composed of sensors based on hybrid 
models, a combination of the first two classes 
(James et al., 2000). 
 
In practice, the models that have been obtained 
through empiric approach are the most popular 
and they will be the favourite ones in this work, 
when artificial neural networks techniques are to 
be employed. 
 
Something that cannot be forgotten while develop-
ing a soft sensor no matter the approach is to de-
termine the best-input variables for the inferential 
model. For distillation columns, a fundamental 
question is to determine the flow, pressure and 
temperature for measurers (associated to each 
tray) have to be used to infer output products com-
position. 
 
The success of an empiric model depends on the 
quality of the collected data, because it is based on 
experimental data. Therefore, aspects such as 
sampling pauses/gaps and noise attenuation must 
be taken into account. 
 
 
 
The process: The distillation column object of this 
study is based on a model presented by Luyben 
(1990). Matlab/Simulink® was used for the imple-
mentation of the model and it will also be used to 
generate data of the dynamic simulation. 
 
This non-linear model employs a non-ideal multi-
component column with a non-equimodal overflow 
and inefficient trays. 
 
The figure 1 presents a schematic draw of the em-
ployed distillation column. 
 



 
Fig. 1. Scheme of the distillation column 
 
The column is composed of 15 plates (or trays), 
numbered starting from the bottom, besides the 
reboiler in the base of the column and a condenser 
in the top of it, which are modelled as two 
more/extra stages. The feed/input is done through 
a unique entrance in the tray 5 of the column. 
 
This unit is divided in two sections: a stripping sec-
tion which encompasses the stages of the column 
base to the feed stage and the rectifying section 
which encompasses the stages of the feed tray up 
to the top of the column. 
 
The feed/input is composed of 5 hypothetic com-
ponents (the heaviest, heavy, intermediate, light 
and the lightest ones) created by the values sup-
plied by Luyben (1990). The feed/input supplied to 
the distillation unit is a mixture of liquid and vapour 
/gaseous states; that is the reason why it is said to 
be mixed and that it is en temperature equilibrium. 
 
Products outputs happen in just two places: in the 
condenser and in the reboiler. The softest compo-
nents that reached the top of the column are 
cooled by heat transfer and stored in the con-
denser. There are three output flows: one part of 
the liquid, which has a constant flow, returns to the 
column (reflux); another part, which also has con-
stant flow, is taken out from the distillate in va-
pour/steam/gaseous state and, finally, the third 
output of the distillate, in liquid state, whose flow is 
controlled by an ideal valve which maintains a con-
stant level in the reservatory (takes instantane-
ously output all exceeding liquid). 
 

The heaviest component that got to the base of the 
column are stored in the reboiler, were they are 
heated. Then, a flow, in vapour state, leaves the 
reboiler, returning to the column below the first 
tray; next, a withdrawal of liquid occurs from the 
base of the column whose flow is controlled by an 
ideal valve which maintains a constant level in the 
reservatory (takes instantaneously output all ex-
ceeding liquid). 
 
 

Table 1  Column specification 
 
  Column diameter 
        Rectifying section 1,829 m 
        Stripping section 1,829 m 
  Weir length in the tray 
        Rectifying section 1,219 m 
        Stripping section 1,219 m 
  Height of weir in the tray 
        Rectifying section 0,032 m 
        Stripping section 0,019 m 

 
Besides, the efficiency of trays is modelled accord-
ing to the Murphree formula, employing a coeffi-
cient of 0.5. It considers that the column having a 
pressure gradient between the top and its base. 
The liquid accumulation (holdup) in the condenser 
and in the boiler is also supplied. The dynamic 
flows in each tray are expressed by Francis for-
mula, which considers rectangular weirs. 
 
 

Table 2  Operation conditions of the column 
 
 Reflux 181.44 kg_mol/h 
 Distillate vapour 90.72 kg_mol/h 
 Heat duty in reboiler 5.280 . 109J 
 Feed/Input  
    Temperature 322.04 ºC 
    Liquid flow 362.84 kg_mol/h 
    Flow of vapour 90.72  kg_mol/h 
    Liquid composition   [0,05  0,60  0,01  0,30  
0,04] 
    Vapour composition  [0,40  0,53  0,02  0,05    
0  ] 
 Pressure  
     Reflux drum 135,83 kPa 
     Reboiler 146,17 kPa 
 Holdup  
     Reflux drum 0,2832 m3 
     Reboiler 0,2832 m3 

 
4.  RESULTS 

As it has already been mentioned above, this work 
aims at developing a soft sensor that could esti-
mate the instantaneous composition of component 
no. 2 at the top of the column, employing physical 
measures supplied to a neural network. The first 



step to develop this sensor is to determine the data 
set to be used and then train the neural net. 
 
 
4.1  Data set 
 
The data set comprises the values measured in the 
variables that are used as input for the neural net-
work. This set has been divided into two sub-sets – 
one for the neural network training and the other 
one for soft sensor testing. 
The input variables of the soft sensor are divided in 
two classes: internal and external  The internal 
ones are not directly subject to manipulation, 
whereas the external ones can be manipulated. 
 
The external variables are excited by a random 
signal with variations of ±5% around their nominal 
steady state values, with a different seed for each 
one. The external variables are as following: 
 

• Heat duty in reboiler - QR 
• Reflux flow in the column - R 
• Feed temperature (liquid and vapor) – TF 
• Liquid feed flow - FL 
• Vapor feed flow - FV 

 
Among the internal variables, the temperature in 6 
trays of the column (chosen so as to reduce the 
number of inputs of the neural net according to cor-
relation analysis of the values) will also compose 
the input vector of the sensor. The temperatures in 
the following trays were selected: 1, 3, 5, 7, 11 and 
17. Those temperatures are measured with a sam-
pling time of 9 seconds, defined as 1/10 of  the mi-
nor time constant of the system. 
 
The random signal used to excite the external vari-
ables is maintained constant for 3 sampling times, 
that is equivalent to a period of 27 seconds. 
 
 
4.2  RNA training 
 
The ability to efficiently represent non-linear sys-
tems is one of the most attractive aspects of using 
artificial nets in soft sensing systems (Fileti et 
al.,1999). 
 
Matlab® toolbox has been used to implement and 
train the neural net. The net employed had a feed-
forward architecture, due to their better results, 
comparing to those of Elman type, that were ini-
tially also considered. 
 

 
Fig. 2. Architecture of a feedforward neural net-

work with one hidden layer 
 
The four–layer topology of the neural net has 2 
hidden layers. The first one (of input) is composed 
of 11 neurons. The hidden layers have 50 and 25 
neurons, respectively, as observed in several tests 
performed so as to combine good results and an 
acceptable usage of computational resources. Fi-
nally, the output layer has just one neuron, which 
supplies the estimate result for the composition of 
component 2 in the column top product. 
 
Hyperbolic sigmoid tangents were used as trans-
ference functions in the hidden layer neurons. The 
training algorithm was the Levenberg-Maquardt 
one, as available in Matlab®, because it presents 
faster convergence. 
 
To be sure that the soft sensor is sufficiently reli-
able, the proposal is to train it initially with a deter-
mined amount of points and then put it into opera-
tion in a plant, in parallel with a hard sensor 
(probably NIR). After a certain period of time of op-
eration, when more data are available from the 
hard sensor and from the secondary variables of 
the soft sensor, it is possible to compare the re-
sults presented by the two sensors. If the results 
are sufficiently close, the soft sensor could be con-
sidered ready to assume its role as a supervisor of 
the hard sensor and work by itself. If not, a new 
training period can be performed. These tasks can 
continue until the sensor performance is consid-
ered satisfactory for the application. The idea is to 
use the soft sensor as a redundant sensor, which 
takes care of the hard sensor. In case of a dis-
crepancy between them, it would sound an alarm 
to alert the plant operator that one of the sensors 
has problems. 
 
Next it is analysed two different ways to train the 
neural network, that is, partial training and full train-
ing. 
 
Partial training consists of starting the network 
training with a small data set, until it converges (er-



ror below a stipulated value). After that, this same 
net is retrained with a set twice as big (two times 
the initial one) and so on, and so forth. The objec-
tive is to discover the influence of this kind of train-
ing compared to the one employing all data at the 
same time. 
 
The main errors have been calculated and com-
pared, based on an evaluation criterion for each 
one of the nets. Thus, the obtained errors are: SSE 
error, the somatory of the square error and the 
Max error, which is the major pick of errors pre-
sented for cross validation. The equations defining 
those errors are presented next. 
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The following table sums up, after several evalua-
tions, the sensor results obtained along 20 hours. 
Each group of points was obtained through 3 dif-
ferent training options, that is, 2 partial and 1 full. 
 
 

Table 3  Comparison of different training 
 
 SSE Error Max Error 
1.000 data   
     4 times of 250 11,2240.10-5 0,5426 
     2 times of 500   1,7697.10-5 0,1050 
     1 time  of 1.000   1,4863.10-5 0,1060 

2.000 data   

     4 times of 500   0,2071.10-5 0,0265 
     2 times of 1.000   0,1802.10-5 0,0243 
     1 time  of  2.000   0,0575.10-5 0,0047 

3.000 data   

     6 times of 500   0,1712.10-5 0,0210 
     3 times of 1.000   0,1220.10-5 0,0229 
     1 time  of  3.000   0,0584.10-5 0,0089 

4.000 data   

     4 times of 1.000   0,1220.10-5 0,0229 
     2 times of 2.000   0,0575.10-5 0,0047 
     1 time  of  4.000   0,0954.10-5 0,0087 

 
 
According to the above mentioned data, the way of 
training affects the results for the same data set. 
So, the lower the amount of retrainings, the better 
the obtained results. This happens because when 
the trainings are performed with smaller data sets, 
the net converges to a situation that is not the best 
when more points are added to the set. 
 

Another characteristic that can also be observed is 
that there is an optimum data value for the training 
set, with a minimum error. So, the trainings per-
formed with few points (for instance, 1000) gener-
ate small errors, but those performed with large 
sets (3000 or 4000 points) also generate large er-
rors. Therefore, the best result was obtained with a 
training of 2000 points. 
 
Error correction: After the evaluation of the previ-
ous neural nets, it has been observed that the best 
option is to perform directly a net training with 2000 
points. 
The obtained sensor can be put into operation in 
parallel with the hard sensor to perform evaluations 
of its behaviour. However, after a period of several 
hours of work, it can happen that a relatively large 
error appears. 
 

 
Fig. 3. Example of spurious error 
 
This kind of error, as the one that can be observed 
in figure 3, was called spurious error. It is punctual 
and it affects the sensor behaviour in just a small 
region of points. 
 
It occurs because the net has been trained with a 
number of points not so large (2000). This way, 
some data combinations may have not been pre-
sented in the training or, at least, they may be 
quite different from those in training. To solve this 
problem, it is necessary to perform a retraining of 
the net, now employing the values expected for a 
range of points around this error. 
 
After retraining for a range of 100 points (15 min-
utes) the error in this region was eliminated, as 
shown in figure 4. 
 



 
Fig. 4. After error correction (retraining) 
 
To ensure the sensor to produce just ade-
quate/good results, a longer simulation of 60 hours 
was performed. No new spurious error occurred, 
as can be seen in figure 5. 
 
 

 
Fig. 5. Sensor results after a period of 60h 
 
 
Conclusions: Multicomponent distillation columns 
are difficult to control not only for their non-linear 
and transient behaviour, but also because the 
product quality cannot be measured rapidly and 
with reliability. The present work developed an in-
ferential estimate system of the distillate composi-
tion based on the application of artificial neural net-
works. 
 
This system proved to be quite accurate (error 
lower than 10-3) and fast, two of the main problems 
previously presented. This solution has a low cost 
if compared to the alternative measuring systems 
of the market. 
 
Nevertheless, it is important to highlight the impor-
tance of the data set training for this kind of ana-
lyser. As it was observed, small sets can be not 
large enough for major variations in the plant op-
eration, when local retraining procedures are 
needed. 
 

The obtained system can be implemented to sup-
ply data for a more modern and powerful system 
operating in the plant. 
 
 

NOMENCLATURE 
 
FL – Liquid input flow 
FV – Flow of input gas 
QR – Heat duty ratio in the reboiler 
R – Intern reflux rate 
TF – Input flow temperature 
Z  – Estimate value supplied by the soft sensor 
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